Unconditionally energy stable time stepping scheme for Cahn-Morral equation: Application to multi-component spinodal decomposition and optimal space tiling
نویسنده
چکیده
An unconditionally energy stable time stepping scheme is introduced to solve CahnMorral-like equations in the present study. It is constructed based on the combination of David Eyre’s time stepping scheme and Schur complement approach. Although the presented method is general and independent to the choice of homogeneous free energy density function term, logarithmic and polynomial energy functions are specifically considered in this paper. The method is applied to study the spinodal decomposition in multi component systems and optimal space tiling problems. A penalization strategy is developed, in the case of later problem, to avoid trivial solutions. Extensive numerical experiments demonstrate the success and performance of the presented method. According to the numerical results, the method is convergent and energy stable, independent to the choice of time stepsize. Its MATLAB implementation is included in the appendix for the numerical evaluation of algorithm and reproduction of the presented results.
منابع مشابه
An Efficient, Energy Stable Scheme for the Cahn-Hilliard-Brinkman System
We present an unconditionally energy stable and uniquely solvable finite difference scheme for the Cahn-Hilliard-Brinkman (CHB) system, which is comprised of a Cahn-Hilliard-type diffusion equation and a generalized Brinkman equation modeling fluid flow. The CHB system is a generalization of the Cahn-Hilliard-Stokes model and describes two phase very viscous flows in porous media. The scheme is...
متن کاملStability and Convergence of a Second Order Mixed Finite Element Method for the Cahn-Hilliard Equation
In this paper we devise and analyze an unconditionally stable, second-order-in-time numerical scheme for the Cahn-Hilliard equation in two and three space dimensions. We prove that our two-step scheme is unconditionally energy stable and unconditionally uniquely solvable. Furthermore, we show that the discrete phase variable is bounded in L∞ (0, T ;L∞) and the discrete chemical potential is bou...
متن کاملA second order in time, decoupled, unconditionally stable numerical scheme for the Cahn-Hilliard-Darcy system
We propose a novel second order in time, decoupled and unconditionally stable numerical scheme for solving the Cahn-Hilliard-Darcy (CHD) system which models two-phase flow in porous medium or in a Hele-Shaw cell. The scheme is based on the ideas of second order convex-splitting for the Cahn-Hilliard equation and pressure-correction for the Darcy equation. We show that the scheme is uniquely sol...
متن کاملA second order in time, uniquely solvable, unconditionally stable numerical scheme for Cahn-Hilliard-Navier-Stokes equation
We propose a novel second order in time numerical scheme for Cahn-Hilliard-NavierStokes phase field model with matched density. The scheme is based on second order convex-splitting for the Cahn-Hilliard equation and pressure-projection for the Navier-Stokes equation. We show that the scheme is mass-conservative, satisfies a modified energy law and is therefore unconditionally stable. Moreover, ...
متن کاملConvergence analysis and error estimates for a second order accurate finite element method for the Cahn-Hilliard-Navier-Stokes system
In this paper, we present a novel second order in time mixed finite element scheme for the Cahn-Hilliard-Navier-Stokes equations with matched densities. The scheme combines a standard second order Crank-Nicholson method for the Navier-Stokes equations and a modification to the Crank-Nicholson method for the Cahn-Hilliard equation. In particular, a second order Adams-Bashforth extrapolation and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comput. Physics
دوره 304 شماره
صفحات -
تاریخ انتشار 2016